Calculus AB

(Day 1)
Position

$$
s(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0}
$$

Velocity- $v(t)=s^{\prime}(t)=a t+v_{0}$
units- m/sec
Average Velocity-
$V_{\text {ave }}=\frac{S_{f}-S_{0}}{t_{f} \cdot t_{0}}$
Instantaneous Velocity-
$s^{\prime}(t)=a t+v_{0}$

Position Function - $s(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0}$
s-position (distance)
t-time
a - acceleration
v - velocity
v_{0}-initial velocity
$\begin{array}{ll}s_{0} \text {-initial position } & g=32 \mathrm{Ft} / \mathrm{ser} \\ g \text {-gravitational constant }\end{array}$
g-gravitational constant $\quad 9=9.8 \mathrm{~m} / \mathrm{sec}^{2}$

The French fort Michilimacinac looked over the Straits of Mackinac, the narrowest section of water separating the Upper and Lower Peninsula of Michigan. A cannon was located in the watch tower looking out over the lake. The cannon is mounted 64 ft . above the waterline. If the cannon fires at an initial velocity of $\underline{\underline{240} \mathrm{ft}} / \mathrm{sec}$, answer the following questions:
a) Write a function that gives the height (position) of the cannon ball as a function of time.

$$
\begin{aligned}
s(t) & =\frac{1}{2}(-32) t^{2}+240 t+64 \\
& =-16 t^{2}+240 t+64
\end{aligned}
$$

b) Determine the average velocity of the shot between the ind and 3rd seconds of flight.

$\begin{aligned} S_{2} & =480 \\ S_{3} & =640\end{aligned}$

The French fort Michilimacinac looked over the Straits of Mackinac, the narrowest section of water separating the Upper and Lower Peninsula of Michigan. A cannon was located in the watch tower looking out over the lake. The cannon is mounted 64 ft . above the waterline. If the cannon fires at an initial velocity of $\mathbf{2 4 0} \mathbf{f t} / \mathbf{s e c}$, answer the following questions:
a) $-16 t^{2}+240 t+64$
b) $160 \mathrm{ft} / \mathrm{s}$
c) Write a function that gives the instantaneous velocity as a function of time.

$$
V(t)=-32 t+240
$$

d) Find the instantaneous velocity of $t=2$ and $t=3$.

$$
\begin{aligned}
& V(2)=176 \mathrm{Ft} / \mathrm{sec} \\
& V(3)=144 \mathrm{Ft} / \mathrm{sec} \\
& \text { tion of the shot. }
\end{aligned}
$$

$$
a(t)=-32 \mathrm{Ft} / \mathrm{sta}^{-2}
$$

Assignment:

Pg. 115
97-104 all

The French fort Michilimacinac looked over the Straits of Mackinac, the narrowest section of water separating the Upper and Lower Peninsula of Michigan. A cannon was located in the watch tower looking out over the lake. The cannon is mounted 64 ft . above the waterline. If the cannon fires at an initial velocity of $\mathbf{2 4 0} \mathbf{f t} / \mathbf{s e c}$, answer the following questions:
a) $-16 t^{2}+240 t+64$
b) $160 \mathrm{ft} / \mathrm{s}$
c) $-32 t+240$
d) $176 \mathrm{ft} / \mathrm{s}, 144 \mathrm{ft} / \mathrm{s}$
e) $-32 \mathrm{ft} / \mathrm{s}^{2}$
f) Find how long it takes the cannonball to hit the water.
$S(t)=-16 t^{2}+240 t+64 \quad 0=t^{2}-15 t-4$ $0=-16 t^{2}+240 t+64 \quad \frac{15 \pm \sqrt{225-4(1)(-4)}}{2(} t=15.26 \mathrm{sec}$
g) Find the velocity of the shot at the instant it hils the water.

$$
V(15.26)=-32(15.26)+240=-248.32 \mathrm{Ft} / \mathrm{ps}
$$

